Lesson Plan Template

	1) $3^{2} * 3^{4}$ 2) $4^{2} * 4$ 3) $25 * 5^{2}$ 4) $64 * 4^{2}$ 5) $8 * 2^{5}$ Once students have had enough time to try these problem should begin to give students an idea of how to multiply exponents.	we will talk about some of the solutions to these problems. They ynomials because they will help students review the properties of
10 min	Explain: (concepts, procedures, vocabulary, etc.) This section will be brief. I will give students a brief overvi apply it in their groups. The main thing that students must different exponential terms, we will multiply their coeffic exponents together. I will use several examples of monomia To perform the box method of multiplication, students shou perform the vertical method, students will align the polyn way as they would for integers. In the FOIL method, they grouping method, the will separate the process into the add $(4 x+3)(3 x+2)$ will be split into $4 x(3 x+2)+3(3 x+2)$. After this explanation, I will split students up into groups partners. Each group will be assigned one of these four m problems on it to try.	of each type of multiplication, but I will allow them to learn how to emember is how to multiply different exponential terms. "To multiply ts and then we will multiply the variable component by adding the s, such as $x^{*} 3 x=3 x^{2}$ and $4 x^{2 *} 10 x=40 x^{3}$. Id recognize that the box is helping them group each term together. To mials as they would align integers and continue to multiply in the same il multiply the First, Outer, Inner, and Last terms together. In the ition of two groups of multiplications. For example, the multiplication ere they will try to practice using one of the methods with their hods to work on, and they will be given a worksheet with a set of
$\begin{gathered} 20-25 \\ \text { min } \end{gathered}$	Explore: (independent, concreate practice/application w experiences, reflective questions- probing or clarifying Once we have covered enough information about each type have assigned for them. Then, they will be given a worksh problems, but they will be expected to try them in a diffe to use the FOIL method, while another group will use the After students have had enough time to learn their multip the other groups so that all the students have an opportu the problems that they did, and they will show the other	relevant learning task -connections from content to real-life stions) of multiplication, I will allow the students to split into the groups that I t of problems to try together. Each group will be working on the same t way than the other groups. For example, one group may be expected x method. ation strategy, I will have a few students from each group visit each of y to learn about the other types of multiplication. Students will present dents how to use their method of multiplication.
5 min	Review (wrap up and transition to next activity): We will end class with a discussion of how each method strengths and weaknesses of each method. I will have th We will also take a few minutes to generalize how each	t be helpful. Students will have the opportunity to analyze the rovide examples where they found each method was most helpful. od may be generalized to higher order polynomials.
Formative Assessment: (linked to objectives) Progress monitoring throughout lesson- clarifying questions, check- in strategies, etc. Progress monitoring will consist of walking around the classroom to monitor how each group is doing. Then, I will also monitor how each student contributes to the discussion at the end of class to see how well they understand each method. Consideration for Back-up Plan: If students are struggling to understand all the different methods, we will work on the grouping method and the grid method as a class because these will be the most useful in generalizing to higher order polynomials.		Summative Assessment (linked back to objectives) End of lesson: At the end of the lesson, I will have students turn in the problems that they were working on. I will be grading on completion, and I am hoping that all students will be able to finish the problems. Students will still receive full credit if they submit something. If applicable- overall unit, chapter, concept, etc.: Students are expected to be able to multiply polynomials on the test.

Solutions to opening activity:

1) 3^{6}
2) 4^{3}
3) 5^{4}
4) 4^{5}
5) 2^{8}

BOXMETHOD

Worksheet problems (and solutions)

1) $(x+7)(3 x+2)=3 x^{2}+23 x+14$
2) $(x+3)(2 x+6)=2 x^{2} 12 x+18$
3) $(x+4)(6 x-1)=6 x^{2}+23 x 14$
4) $(x-2)(2 x-5)=2 x^{2}-9 x+10$

$$
\begin{array}{r}
x^{3}+4 x^{2}-2 x+6 \\
2 x+7 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
7 x^{3}+28 x^{2}-14 x+42 \\
\frac{2 x^{4}+8 x^{3}-4 x^{2}+12 x}{2 x^{4}+15 x^{3}+24 x^{2}-2 x+42}
\end{array}
$$

