Lesson Plan Template

Grade: 9 ${ }^{\text {th }}$ Grade				Subject: Algebra
Materials: Quiz, Notebook, Pencil, GCF handout				Technology Needed: Calculators
Instructio Direc Guid Socra Learn Lectu Tech Othe	al Strategies: instruction practice ic Seminar ng Centers logy integration (list)	\square \square \square \square \square \square	Peer teaching/collaboration/ cooperative learning Visuals/Graphic organizers PBL Discussion/Debate Modeling	Guided Practices and Concrete Application: Large group activity Hands-on Independent activity Technology integration Pairing/collaboration Imitation/Repeat/Mimic Simulations/Scenarios Other (list) Explain: Since students will be taking a quiz, we will not have much time for students to work on their own. Most of this lesson will be a large group activity of understanding how to find the Greatest Common Factor between two integers.
Standard(s) HS.A.SSE.2: Use the structure of an equation to identify ways to rewrite it.				Differentiation Below Proficiency: These students will likely struggle to find all the factors in the tree. I will try to assist these students by giving them the factoring handout as they work on the question on the board. I will also have these students come to me with questions after class if they need to. I will also try to have these students work with one of their peers who is doing well in the second day of teaching GCFs. Above Proficiency: These students should grasp the material quickly. They will quickly understand how to create factor trees and should be able to find the GCF of two numbers. They may even be able to recognize the GCF in some cases without needing to create a factor tree or diagram. These students will be challenged by trying to find creative applications of the GCF. Approaching/Emerging Proficiency: Students who are approaching proficiency will be expected to understand the example that we do on the board. They should also have a good understanding of how to create factor trees. The place that these students may struggle is in remembering to write down numbers that repeat. My hope is that the visual example of planning a party will help these students to gain a better understanding of the GCF. Modalities/Learning Preferences: working in a large group, teaching the steps of a procedure for finding GCF, visual diagrams (factor trees), handouts with helpful notes
Objective(s) In this lesson, students will begin to learn how to identify the greatest common factor between integers. This will help them understand how to factor in different types of expressions. "I can identify the GCF of two integers. Bloom's Taxonomy Cognitive Level: Understanding, Applying, Analyzing				
Classroom	Management- (g udents are expec udents are also lesson. udents are also ing a problem on		s), movement/transitions, etc.) ork quietly during the quiz. to listen attentively throughout to work quietly when they are wn.	Behavior Expectations- (systems, strategies, procedures specific to the lesson, rules, and expectations, etc.) - Students are expected to work quietly on the quiz and when they are trying a problem on their own. - Students are also expected to listen attentively during the lesson. - Students are expected to respect the contributions of others.
Minutes			Procedures	
2 min	Set-up/Prep: Th	set	for this lesson will consist of pass	out the quiz to students.
$\begin{gathered} \hline 20-25 \\ \min \end{gathered}$	Engage: (openin Students will be other half of the		y/ anticipatory Set - access prio by taking the first quiz of the unit.	arning / stimulate interest /generate questions, etc.) The quiz will probably take about 15-20 minutes. Then, we will begin the

Lesson Plan Template

	As an opening question, I will ask students to imagine tha they can invite. They will have 36 cookies, 24 appetizers a so that each guest receives the same number of cookies, will ask them to describe their reasoning as they solve the to represent each item that a guest will receive. Then, by could have and how many items each guest would receive themselves). "The number 12 is called the Greatest Comm This example will motivate the need for finding the greate	hey are planning a party and they want to know how many guests that 12 entrees. Students must figure out how many guests they can invite petizers, and entrees as other guests. They will discuss as a class, and I problem. To solve the problem, we will draw different dots on the board ranging these dots, students should start to see how many guests they Finally, I will tell them that the answer should be 12 guests (including Factor" of these three numbers. common factor between different numbers.
15 min	Explain: (concepts, procedures, vocabulary, etc.) To explain a helpful way of finding the GCF of two numbe the diagram in their notes. Then, I will have them pull out numbers. This will help us to find the prime factorization factorization tree by dividing our original number by one Then, we repeat this process for each of the two numbers tree. Then, we will write our original numbers in the circles of our share first. These numbers will go in the outside part of th numbers that they share and write these numbers in the also important to note that if they share more than one cop diagram. Finally, we will multiply all the numbers that the 5 , the GCF will be 30 . The example we will work on as a class will be the numbe Their GCF is 10.	I will draw a Venn Diagram on the board, and I will have students copy heir calculators. First, we will begin by creating a factor tree for the two the numbers. I will explain to students that we create a prime its factors and writing the two numbers in the next line of our tree. until we have only prime numbers at the bottom of each branch of the Venn diagram. We will find all the prime numbers that they do not Venn diagram corresponding to each number. Then, we will find the ared part of the Venn diagram. This is shown in an image below. It is y of the same number, this number should be written twice in the Venn share to find our GCF. For example, if they share the numbers 2,3 , and 20 and 30 . Their prime factorizations are $2 * 2 * 5$ and $2 * 3 * 5$, respectively
10 min	Explore: (independent, concreate practice/application w experiences, reflective questions- probing or clarifying q Students will be given two numbers, and they will be asked that we just used. First, they should make a factor tree (usin diagram. Finally, they should multiply these numbers to find I will have students try to find the GCF for the numbers 40 respectively. They should find that the GCF here is 10 .	h relevant learning task -connections from content to real-life stions) to try to find their GCF. I will encourage them to use the same process ng a calculator if necessary), and then, they will create their Venn d the GCF. and 70 . They should find the prime factorizations $2 * 2 * 2 * 5$ and $2 * 5 * 7$,
5 min	Review (wrap up and transition to next activity): We will wrap up by talking about how else this might be h GCF of polynomials. They may also recognize that GCFs ar subtracting, multiplying, and dividing). I will also finish cla each number. This will be helpful in finding the GCF in the	ful. My hope is that students will recognize that they can also find the helpful in performing each of the four arithmetic operations (adding, by handing out a sheet of numbers 1-100 which lists all the factors of ture.
Formative Assessment: (linked to objectives) Progress monitoring throughout lesson- clarifying questions, check- in strategies, etc. I will monitor the contributions of students throughout the class period to see how they are doing. I will also walk around to check on students as they are trying the problem on their own. Consideration for Back-up Plan: If students are having trouble finding the factorizations of numbers, I will pass out the GCF hand out during the lesson to help them see the factors of each number. We will return to this next lesson, if necessary.		Summative Assessment (linked back to objectives) End of lesson: At the end of the lesson, I will not have students turn any work in, but will have them turn work in after the next lesson where we will continue to work on finding the GCF. If applicable- overall unit, chapter, concept, etc.: Students will need to know how to find the GCF so that they can factor polynomials on the test.
Reflection (What went well? What did the students learn? How do you know? What changes would you make?):		

$$
\begin{array}{r}
48=2 \times 2 \times 2 \times 2 \times 3 \\
180=2 \times 2 \times 3 \times 3 \times 5
\end{array}
$$

Least common multiple $=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5=720$
Greatest common divisor $=2 \times 2 \times 3=12$

Number	Fownt	Prite Pactorirata－	Prime	cormpend	Bounh 렌 Faclets
1	1	－		－	1
7	17	3	？		7
3	1．$\quad 1$	7	2		2
4	1．34	11		\＃＇	3
5	1．5	5	＋		
6	1．2．3．	2＊3		$=$	1
1	1.5	3	\cdots		
E	1，3，4，	21		\because	4
F	1．39	\＄			1
15	1．2．0，15	7－5		－	4
11	1.11	11	\cdots		7
12	1，\％4，\＃－	345		\because	4
18	1．13	$\cdots 3$	N		$\underline{2}$
415	1．2．74	2＊T		a	1
15	1， 3.15	コワ5		\％	4
16		21		\％	5
17	1.17	17	\cdots		\underline{z}
18		2×9		$=$	易
14	リ． 19	－	\because		7
0	1，24， 510	3145		\cdots	4
4	1,374	3＊ 7		$=$	4
$\underline{2}$	1．2．11．22	7×11		\pm	1
73	1． 5	313	－		7
${ }^{5} 4$	1，3，4，6，12， 24	2143		z	4
25	1． 5	p		$=$	1

