Lesson Plan Template

Lesson Plan Template

	Once students have handed their papers in, we will discuss how we might solve this problem. Students should remember that in the previous lesson, the solution was the GCF of the three numbers. We will try to solve the problem the same way here. To find the GCF of monomials, we must compare their two components, the variable, and the coefficient. First, we will see how many ' x ' variables we see in each term. We have one term with three, one with two, and one term with only one. Therefore, the greatest number of variables in common is a single ' x '. Then, we will compare the coefficients in the same way we did yesterday. We will draw a Venn diagram and use the handouts to find the greatest factor that each number has in common. We should find that the GCF of the coefficients is 4 . This leaves us with a total GCF of 4 x .	
$\begin{gathered} 10-15 \\ \min \end{gathered}$	Explain: (concepts, procedures, vocabulary, etc.) I have already explained to students that finding the GCF coefficient. Now, we will run through a couple more ex to find the GCF of $5 x^{2}$ and $12 x^{3}$. We will note that the G Then, we will note that both terms have an x^{2} in comm Now we will try another similar example with three ter that the GCF of the coefficients is 5 . Then, we will obse $5 x$. Now, I will attempt to give students a brief intro to fact example of $3 x+x$. In this example, students should rec what we will "factor out" of the expression because it is each of the quotients. That is, we will have $3 x+x=x$ (3 In the next, example, we will have a slightly more comp see that the GCF here is $2 x$. Then, we will divide each term expression by $2 x$ to give us $4 x^{2}+2 x=2 x(2 x+1)$. We will not do any more examples after this because w expected to fully understand factoring yet.	a variable term includes two steps, find the GCF of the variable and the les. First, we will begin with the example of two monomials. We will try f the coefficients is 1 because they have no other factors in common. Therefore, the GCF is $1 x^{2}$. This time we will try to find the GCF of $15 x, 25 x^{2}$, and $75 x^{3}$. We will note hat each term shares an ' x ' in common. Therefore, the GCF here will be g once they understand how to find the GCF. We will begin with the e that the only factor that is shared by both terms is x. Therefore, this is GCF. To do this, we will divide each term by ' x ' and multiply ' x ' by the $=x(4)$. ed GCF. We will attempt to factor $4 x^{2}+2 x$. Students should be able to by $2 x$ which will leave us with $2 x+1$. Finally, we must multiply this ill return to factoring again in a few more lessons. Students are not
$\begin{gathered} 15-20 \\ \min \end{gathered}$	Explore: (independent, concreate practice/application experiences, reflective questions- probing or clarifyin Once we have covered a few examples, I will break the on the board. Students will be expected to find the GCF expected to try to factor each expression into simplest Problems that the students will be expected to work on $\begin{aligned} & 14 x+7 \\ & 15 x^{2}+5 x \\ & x^{2}-7 x \\ & 5 x^{2}-13 x \end{aligned}$ $x^{2}+4 x-x-4 \quad \text { (this is a challenge problem) }$ Solutions: $\begin{aligned} & 7(2 x+1) \quad \text { GCF: } 7 \\ & 5 x(3 x+1) \quad \text { GCF: } 5 x \\ & x(x-7) \quad \text { GCF: } x \\ & x(5 x-13) \quad \text { GCF: } x \\ & (x+4)(x-1) \quad \text { GCF: } x+4 \end{aligned}$	relevant learning task -connections from content to real-life tions) nts up into pairs where they will work on a few problems that I write ch set of numbers/terms. Then, any students who finish this will be as a challenge. de:
3-5 min	Review (wrap up and transition to next activity): To wrap up, I will ask if students have any more quest working on. If not, I will have students continue to wo	so, we will review another example from the problems that they were their partner until the end of class.
Formative Assessment: (linked to objectives) Progress monitoring throughout lesson- clarifying questions, check- in strategies, etc. First, I will observe the contributions of different students at the beginning of class. I will also observe the responses that they have written down to the opening question. Then, I will walk around as students are working to see if they have any questions.		Summative Assessment (linked back to objectives) End of lesson: At the end of the lesson, I will collect student work and assess how well they are understanding the material. All students will receive credit if they hand something in. If applicable- overall unit, chapter, concept, etc.: Students must be able to factor integers and polynomials on the unit test.

Lesson Plan Template

If students are continuing to struggle with factoring, I may use this lesson to continue focusing on factoring integers. Then, I may devote part of the next class period to factoring binomials.

Reflection (What went well? What did the students learn? How do you know? What changes would you make?):

