Lesson Plan Template

Lesson Plan Template

	For the opening activity, I will write several long divisio to solve these problems using long division. Then, I will integers.	ems on the board such as $7462 / 7$ and $4593 / 8$. Students will be asked em that polynomial long division is very similar to long division of
$\begin{gathered} 10-15 \\ \min \end{gathered}$	Explain: (concepts, procedures, vocabulary, etc.) We will begin with a simple example. Will try to evaluate $\left(x^{2}+2 x\right) / x$. We expect the quotient will be $x+2$. However, we must show this by performing our long division. We will see how many times ' x ' can "go into" x^{2}. Then, since it goes in evenly, we will be left to do the same thing with $2 x$, just as we would do in integer long division. An example of this is show below to see what type of writing would be done on the board. Then, we will try another problem. This time, we will do a problem which will have a remainder at the end. The example will be $\left(x^{2}+5 x+6\right) /(x+7)$. This time, we will again be trying to find how many times ' x ' goes into x^{2} to start. Then, when we perform our subtraction, we must multiply $x+7$ by ' x ' to find what we will write in the next line. We will repeat this process, but it may be simpler to look at the example below. When the problem ends with a remainder (a number that ' x ' cannot divide evenly), this remainder will be written in the form $a /(x+7)$ because ' a ' is the remainder and ($x+7$) is the divisor in the case. Finally, I will explain to students that when we are doing a problem such as $\left(x^{2}-6\right) /(x+5)$, we must also account for a $0 x$ term in our dividend. This will allow the problem to work out more smoothly.	
20 min	Explore: (independent, concreate practice/application with relevant learning task -connections from content to real-life experiences, reflective questions- probing or clarifying questions) To practice working on dividing polynomials, I will have students break into groups. This time, I will allow students to choose their groups. They will work in groups of 3-4 students, and I will have groups ready to assign if students are unable to include everyone. In these groups, each student will be assigned a problem to work on. Then, once they have each completed their problem, they will have the opportunity to explain their problem to the rest of their group. If any student is struggling to finish their problem, I will have the group work together to solve this problem instead of having this student present, and this will allow the student the opportunity to see how to finish their problem. The problems assigned to each group will be $\begin{aligned} & \left(x^{2}+4 x-5\right) /(x-1) \\ & \left(x^{3}+3 x^{2}+7 x+2\right) /(x+2) \\ & \left(x^{3}+4 x+7\right) /(x-3) \\ & \left(x^{2}-7 x+4\right) /(x+4) \end{aligned}$ Solutions: 1) $x+5$ 2) $x^{2}+x+5$ Remainder: -8 3) $x^{2}+3 x+13$ Remainder: 46 4) $x-13$ Remainder: 56	
5 min	Review (wrap up and transition to next activity): After students have had the chance to present their prob polynomial long division. If there are no questions, I will assign out of the textbook for homework.	s to the group, I will ask them if they have any questions about them a few minutes to get started on some of the problems I will
Formative Progres checkin strate I will perf observe h encourag so that th Conside If student continue	Assessment: (linked to objectives) monitoring throughout lesson- clarifying questions, es, etc. m most of my progress monitoring by walking around to w each group of students is doing together. I will even those who are struggling to find ways to contribute peers can try to explain the concepts to them. tion for Back-up Plan: are struggling with performing long division, we will work through problems as a large group.	Summative Assessment (linked back to objectives) End of lesson: At the end of the lesson, I will have students turn in their work so that I can see how they are doing. I will also try to assess how students are doing when they present their work to their groups. If applicable- overall unit, chapter, concept, etc.: Students need to be able to divide polynomials on the test. They will be permitted to choose which method they prefer.
Reflection (What went well? What did the students learn? How do you know? What changes would you make?):		

Polynomial Division

$$
\begin{aligned}
& \text { Long Division } \\
& x - 3 \longdiv { 2 x ^ { 2 } + x - 5 } \\
& \begin{array}{r}
2 x^{3}-5 x^{2}-8 x+15 \\
x^{3}-6 x^{2} \\
\frac{x^{2}-3 x}{-5 x+15} \\
\text { Remainder } 0
\end{array}
\end{aligned}
$$

