Lesson Plan Template

Lesson Plan Template

2 min	Set-up/Prep: To set up for this lesson, I will write a synthetic division problem on the board. I will include the work for solving it as well. (image below)
$\begin{gathered} 10-12 \\ \text { min } \end{gathered}$	Engage: (opening activity/ anticipatory Set - access prior learning / stimulate interest /generate questions, etc.) To engage students, I will ask students what they think is going on in this problem. They may be confused at first because it looks different than a typical long division problem, and it may even look different than anything they have seen before. After listening to students' ideas, I will share with them that this synthetic division problem is the same thing that they were working on during the previous lesson. I will walk them through each of the steps of solving this problem, and I will explain how to interpret the solution as well. Then, I will show them this video from Khan Academy which compares synthetic division and long division.
$\begin{gathered} 12-15 \\ \min \end{gathered}$	Explain: (concepts, procedures, vocabulary, etc.) Once I have shown students the video, we will work through a few more examples of synthetic division. First, I will explain that synthetic division can be very useful in finding the factors of a polynomial because it is quicker than performing long division. Then, we will try the examples below using synthetic division. $\begin{aligned} & \left(x^{2}+5 x+4\right) /(x+1) \\ & \left(x^{2}+14 x+24\right) /(x+2) \\ & \left(x^{3}+2 x+5\right) /(x-3) \end{aligned}$ Solutions: 1) $x+4$ 2) $x+12$ 3) $x^{2}+3 x+11$ Remainder: 38 Each of these examples will be helpful. The first example will divide cleanly with no remainder, so this will be a simple example to start with. The second problem will have a remainder, so it will help students to understand what to do when this happens. The third problem does not have an x^{2} term, so it will be helpful for students to be reminded that they need to include a placeholder here (zero) for this term.
15-20 min	Explore: (independent, concreate practice/application with relevant learning task -connections from content to real-life experiences, reflective questions- probing or clarifying questions) Once we have gone over the examples as a class, I will break everyone up into pairs of two. I will pair students based on how well they are doing with the material, and each student will be expected to submit work at the end of class. Students will work through the problems below: $\begin{aligned} & \left(x^{2}+3 x+2\right) /(x+1) \\ & \left(x^{3}+13 x^{2}+5 x+14\right) /(x+2) \\ & \left(x^{3}-3 x+4 x-6\right) /(x-2) \\ & \left(x^{4}-4 x^{3}-3 x^{2}+7 x+8\right) /(x-4) \end{aligned}$ Solutions: 1) $x+2$ 2) $x^{2}+3 x+7$ 3) $x^{2}-x+2$ Remainder: -2 4) $x^{3}-3 x-5$ Remainder: -12
5-10 min	Review (wrap up and transition to next activity): As we wrap up the lesson, I will ask students what their opinions are about synthetic division compared to long division. They should recognize that there are some limitations when we are performing synthetic division because we can only divide by binomials of degree 1 with a leading coefficient of 1 . However, they should also begin to see how helpful synthetic division can be for factoring because it is much quicker than long division. They should recognize that if they must test multiple possible factors, this will be the quicker way to do it. Finally, I will remind students that they will have a quiz in the next lesson covering GCFs and dividing polynomials.
Formativ Progre checkin strat	Asessment: (linked to objectives) onitoring throughout lesson- clarifying questions, Summative Assessment (linked back to objectives) End of lesson: At the end of the lesson, I will monitor student progress based on their ability to complete each problem during class. Their work will be graded on completion, but I will still provide feedback.

Lesson Plan Template

I will monitor student progress by evaluating their contributions to the large group discussion. I will also walk around the classroom to monitor how students are doing in their pairs.

If applicable- overall unit, chapter, concept, etc.:
Students need to be able to divide polynomials on the test. They will be permitted to choose which method they prefer.

Consideration for Back-up Plan:

For students that struggle to understand synthetic division, I will allow the option of using long division instead. If the video does not work, I will facilitate a brief discussion about the similarities between the two types of division instead. I will use the example $\left(x^{2}+5 x+6\right) /(x+3)$ to help students understand how each method can be compared. The solution to this example will be $(x+2)$.

Reflection (What went well? What did the students learn? How do you know? What changes would you make?):

Synthetic Division

$3 \longdiv { 1 } \begin{array} { l l l l } { 1 - 5 } & { - 2 } & { 2 4 } \\ { \hline } \end{array}$
$\begin{array}{llll}3 & -6 & -24\end{array}$
$\begin{array}{llll}1 & -2 & -8 & 0\end{array}$

Long Division

$$
\begin{array}{r}
\frac{x^{2}-2 x-8}{x - 3 \longdiv { x ^ { 3 } - 5 x ^ { 2 } - 2 x + 2 4 }} \\
\frac{x^{3}-3 x^{2}}{-2 x^{2}}-2 x+24 \\
\frac{-2 x^{2}+6 x}{-8 x}+24 \\
-8 x+24
\end{array}
$$

