Unit Test Matthew Hrbacek

True/False

Indicate the correct answer by writing "True" or "False." Do not correct the problem if it is false.

Problem 1 The difference of squares says that for any two numbers a and b, $a^2 + b^2 = (a - b)(a + b)$.

Problem 2 We are allowed to add, subtract, multiply, and divide polynomials.

Problem 3 The y-intercept of the function $y = 5x^2 + 7x + 2$ is 8.

Problem 4 The zeros (x-intercepts) of the function $y = 5x^2 + 8x + 2$ are x = -1 and $x = \frac{-2}{5}$.

Multiple Choice

Problem 5 Find the proper factorization for the polynomial $21x^2 + 7x - 14$.

- (a) (21x-1)(x+14)
- (b) (3x-14)(x+1)
- (c) (7x+7)(3x-2)
- (d) none of the above

Problem 6 Find the zeros (x-intercepts) of the function $f(x) = 13x^2 + 12x - 1$

- (a) (13x-1)(x+1)
- (b) (13x+1)(x-1)
- (c) x(x+12)
- (d) none of the above

Problem 7 What is the sum of cubes formula?

- (a) $a^3 + b^3 = a^3b^3$
- (b) $a^3 + b^3 = (a+b)^3$
- (c) $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- (d) $a^3 + b^3 = (a b)^3$

Question 8 What is the difference of cubes formula?

(a)
$$a^3 - b^3 = (a - b)^3$$

(b)
$$a^3 - b^3 = (a - b)(a + b)(a - b)$$

(a)
$$a^3 - b^3 = (a - b)(a + b)(a - b)$$

(b) $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
(c) $a^3 - b^3 = (a^4 - a^2)(b^4 - b^2)$

(d)
$$a^3 - b^3 = (a^4 - a^2)(b^4 - b^2)$$

Question 9 Use the function $f(x) = x^2 - 25$ to answer the following questions.

(a) Factor the equation to rewrite it in simplest form.

- (b) Use the factorization of the function to find the zeros.
- (c) Use the zeros (x-intercepts) and the y-intercept of the function to draw a simple graph of the function.

Question 10 Use the functions $f(x) = x^2 + 5x + 4$ and $g(x) = x^2 - 16$ to answer the following questions.

(a) Find the factorization of f(x).

(b) Find the factorization of g(x).

(c) If h(x) = f(x) + g(x), what is h(x)?

(d) What is the factorization of $h(x)$? What are the zeros (x-intercepts) of $h(x)$?
Question 11 If the zeros (x-intercepts) of a function are $x = 10$, $x = 2$, and $x = 7$, find a function which satisfies the conditions. Proceed to FOIL the function if necessary.
Question 12 If a function has a zero (x-intercept) at $x = 2$, and a $y - intercept$ at 3
(a) Find a quadratic equation which will satisfy the conditions. Poceed to FOIL the function if necessary.
(b) Find a graph that satisfies the conditions.
Ougstion 13 Use polynomial long division to factor $x^3+9x^2-22x-120$
Question 13 Use polynomial long division to factor $\frac{x^3+9x^2-22x-120}{x+3}$.
Challenge Problem: Use the Binomial Theorem to rewrite the expression $(x+y)^{13}$.